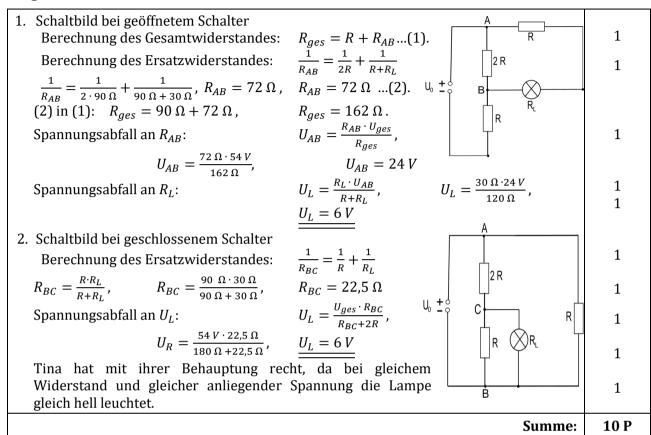
18. Physikolympiade des Landes Sachsen-Anhalt Schuljahr 2021/2022 - Endrunde <u>Lösungen Klasse 10</u>

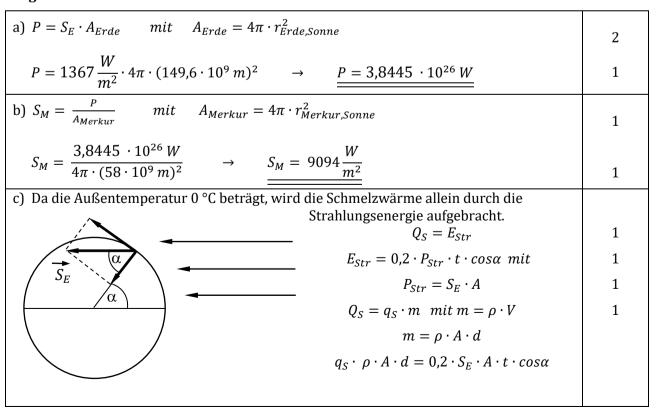
Hinweise für die Korrektoren:

- Kommt eine Schülerin oder ein Schüler bei der Bearbeitung der Aufgaben auf einem anderen als dem angegebenen Weg zum richtigen Ergebnis, so ist das als richtig zu werten.
- Die Punkte je Aufgabe sind verbindlich. Die aufgeführte Verteilung der Punkte innerhalb einer Aufgabe hat empfehlenden Charakter.
- Den Schülern ist mitgeteilt worden, dass Konzepte als solche zu kennzeichnen sind und nicht mit zur Bewertung herangezogen werden.

Aufgabe 1: Experiment


	3 P
(auch mehr Wasser – mehr Druck)	
Punkt: Schweredruck hängt von der Füllhöhe ab	1
(auch Schweredruck verhindert im vollen Glas Luftaustritt)	
Punkt: Luftdruck im Blasrohr muss größer als der Schweredruck sein	1
nur Wasser im gering gefüllten Gefäß auf, weil hier der Schweredruck kleiner ist.	
Schweredruck des Wassers über der Rohröffnung. Wenn man vorsichtig bläst, steig	gt
b) Luftblasen steigen erst auf, wenn der Druck im Blasrohr größer ist als der	
Punkt: Richtige unterschiedliche Beobachtung	1
Im zweiten Teilversuch (kräftiges Blasen) steigen in beiden Messbechern Blasen au	
Messbecher Blasen auf.	
a) Im ersten Teilversuch (vorsichtiges Blasen) steigen nur im gering gefüllten	

Aufgabe 2: James Bond im Burj Khalifa


	Summe:	10 P
James Bond könnte unverletzt bleiben, o	da $v_J < v_{4m}$.	1
$v_J =$	$16,69\frac{m}{s} - 8,33\frac{m}{s}, \qquad v_J = 8,36\frac{m}{s}$	1
	$\sqrt{2 \cdot 9.81 \frac{m}{s^2} \cdot 14.2 m - 8.33 \frac{m}{s}}$	
,	$\sqrt{2\cdot g\cdot s}-v_F$,	1
aus 4 m Höhe: v_{4m}	$= 8.86 \frac{m}{s}$	1
	$= \sqrt{2 \cdot g \cdot h}, \qquad v_{4m} = \sqrt{2 \cdot 9.81 \frac{m}{s^2} \cdot 4 m}$	1
b) Fallweg: $s = v_F \cdot t$	$s = 8,33 \frac{m}{s} \cdot 1,7 s \qquad \underline{s = 14,2 m}.$	1
Fallzeit: $t = \frac{2v_F}{g}$	$t = \frac{2 \cdot 8,33 \frac{m}{s}}{9,81 \frac{m}{s^2}} \qquad \underline{t = 1,70 \text{ s}}$	1
gleiche Wege $s_F = s_J$:	$v_F \cdot t = \frac{g}{2} \cdot t^2$ $(t_1 = 0 \text{ entfällt})$	1
Fallweg von James:	$s_F = v_F + t$ $s_J = \frac{g}{2} \cdot t^2$	1
a) Weg des Fahrstuhls bis James landet:	$s_F = v_F \cdot t$	1

18. Physikolympiade des Landes Sachsen-Anhalt Schuljahr 2021/2022 - Endrunde <u>Lösungen Klasse 10</u>

Aufgabe 3: Ein besonderer Stromkreis

Aufgabe 4: Solarkonstante

18. Physikolympiade des Landes Sachsen-Anhalt Schuljahr 2021/2022 - Endrunde <u>Lösungen Klasse 10</u>

$$t = \frac{q_{S} \cdot \rho \cdot d}{0,2 \cdot S_{E} \cdot \cos \alpha}$$

$$t = \frac{334 \frac{kJ}{kg} \cdot 917 \frac{kg}{m^{3}} \cdot 0,002 m}{0,2 \cdot 1,367 \frac{kW}{m^{2}} \cdot \cos 52^{\circ}}$$

$$\underline{t = 3639 \, s}$$

$$\underline{1}$$
Summe: 10 P

Aufgabe 5: Spannungswechsel

a) Der Gleiter führt eine (sinusförmige) Sch	wingung aus.	1
b) Umlaufdauer: T = 60s/300 = <u>0,2 s</u>		1
Maximalspannung: $U_{\text{max}} = \frac{3.0 \text{ cm}}{12 \text{ cm}} \cdot 6 \text{ V} = \underline{1.5}$	<u>v</u>	2
Der Verlauf ist sinusförmig. Für die erste halbe Drehung befindet sich A links von B. A ist also laut angelegter Gleichspannung positiv gegenüber B gepolt, daher beginnt die Spannungsmessung mit positiven Werten. Die Funktionsgleichung lautet:	U/V 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2
$U(t) = 1.5 V \cdot \sin\left(\frac{2\pi}{0.2 s} \cdot t\right)$	0 0,1 0,2 0,8 0,4 0,5 t/s	1
c) Durch das Verschieben von A ergibt sich ein Startwert von 1,5 V. Da aber das Oszilloskop nun umgepolt angeschlossen wird, beginnt die Spannungsmessung mit negativen Werten.	0 0,1 0,2 0,3 0,4 0,5 t/s	
Punktverteilung: - Startwert um -1,5 V verschoben (1 P) - Graph an t-Achse gespiegelt (1 P) - Diagramm (1 P)	-3	3
	Summe:	10 P
	Gesamtsumme:	43 P