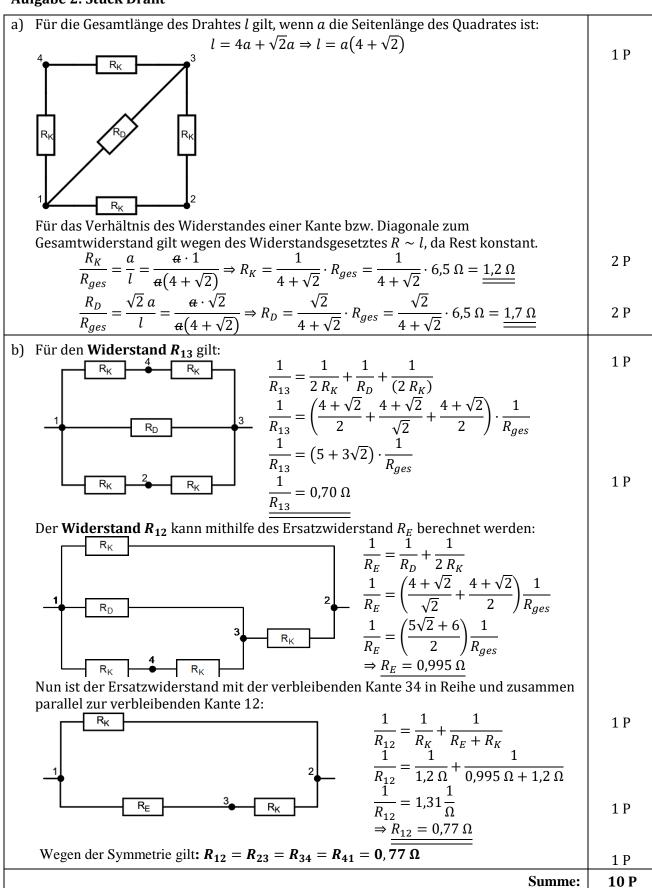
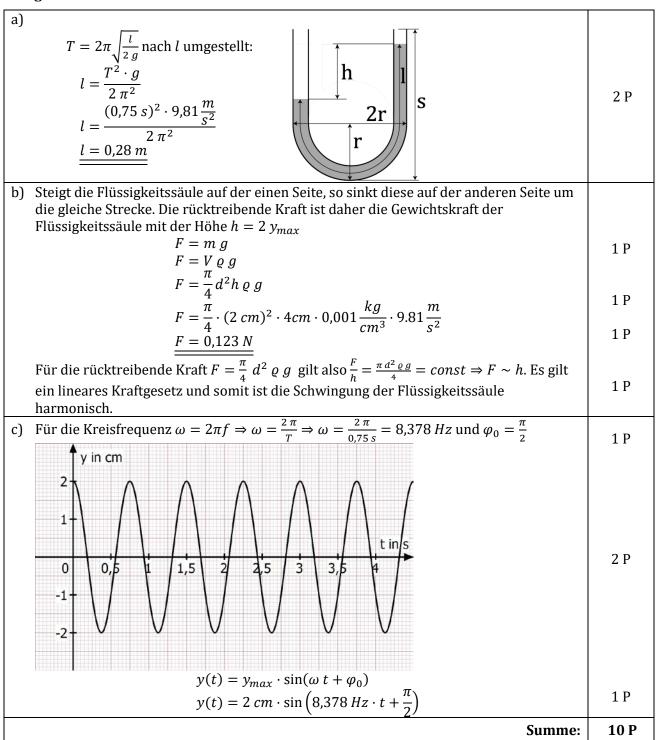

Lösungen Klasse 10 – zunächst nur für Lehrkräfte!

<u>Die Aufgabenblätter bitte einsammeln und wie die Lösungen erst nach dem 1. Dezember an die Schülerinnen und Schüler übergeben!</u>

Kommt eine Schülerin oder ein Schüler bei der Bearbeitung der Aufgaben auf einem anderen als dem angegebenen Weg zum richtigen Ergebnis, so ist das als richtig zu werten.


Die Punkte je Aufgabe sind verbindlich. Die aufgeführte Verteilung der Punkte innerhalb einer Aufgabe hat empfehlenden Charakter.

Aufgabe 1: Doppelreflexion


Lösungen Klasse 10 – zunächst nur für Lehrkräfte!

Aufgabe 2: Stück Draht

Lösungen Klasse 10 – zunächst nur für Lehrkräfte!

Aufgabe 3: U-Rohr

Lösungen Klasse 10 – zunächst nur für Lehrkräfte!

Aufgabe 4: Warmwasserbereitung

a) an das Wasser werden die folgenden Wärmen abgegeben:	1
$Q_{ab} = m \cdot c \cdot \Delta T$	1 P
Speicher Durchlauferhitzer	İ
$Q_{abS} = 50 \ kg \cdot 4,186 \frac{kJ}{kg \cdot K} \cdot 55 \ K$ $Q_{abD} = 2 \ kg \cdot 4,186 \frac{kJ}{kg \cdot K} \cdot 55 \ K$	
$\underline{Q_{abS} = 11,51 MJ} \qquad \underline{Q_{abD} = 460 kJ}$	ĺ
Berechnung der zugeführten Wärmen: $Q_{zu} = V \cdot H$	1 P
$Q_{zuS} = 0.5 \ m^3 \cdot 31 \frac{MJ}{m^3}$ $Q_{zuD} = 0.016 \ m^3 \cdot 31 \frac{MJ}{m^3}$	11
$Q_{zuS} = 15,5 MJ \qquad \qquad Q_{zuD} = 496 kJ$	ı
Berechnung der Wirkungsgrade: $\eta = \frac{Q_{ab}}{Q_{rec}}$	1 P
$\frac{\eta_S = 74\%}{\underline{\eta_D} = 93\%}$	1 P
b) $\eta_S < \eta_D$	1 P
Bei dem Speicher entstehen durch die langen Speicherzeiten Wärmeverluste, die beim	İ
Durchlauferhitzer nicht auftreten, da nur dann erhitzt wird, wenn warmes Wasser gebraucht wird.	1 P
c) Es gilt: $1 kWh = 3600 kJ$ bzw. $1 kJ = 1 \frac{kWh}{3600}$	
Für die Kosten mit dem Durchlauferhitzer K_D folgt:	1 P
$K_D = Q_{zuD} \frac{662 \in}{10000 kWh} \rightarrow K_D = \frac{496 kWh}{3600} \frac{662 \in}{10000 kWh} \rightarrow \underline{K_D = 0.9 Cent}$	1 P
d) Entsprechend ergeben sich die Kosten K _w für den Wasserkocher zu:	
$K_W = \frac{Q_{abD}}{\eta_W} \frac{706 \cdot \xi}{2500 kWh} \rightarrow K_W = \frac{460 kWh}{3600 \cdot 0,9} \frac{706 \cdot \xi}{2500 kWh} \rightarrow \underline{K_W = 4,3 Cent}$	2 P
Summe:	10 P
Gesamtsumme:	40 P